skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sayah, Neshat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-Area Additive Manufacturing (LAAM) has seen increased application in manufacturing meter-scale, polymeric composite structural parts, especially for tooling and fixturing. Unfortunately, LAAM introduces manufacturing-induced defects in printed composites, e.g., intrabead microvoids and poor interbead adhesion that are not otherwise seen when traditional manufacturing methods are used, causing degradation of mechanical and fracture properties. In this paper, the fracture behavior of neat acrylonitrile butadiene styrene (ABS) and short carbon fiber-reinforced ABS (CF/ABS) fabricated by LAAM is compared and analyzed by evaluating their energy release rate 𝐺𝐼𝑐 and fracture mechanisms. A double cantilever beam with doublers (DCB-D) test for single-bead, double-bead, and multiple-bead configurations is developed by incorporating rigid doublers to reduce the compressive failure at the crack tip, allowing for the measurement of crack propagation. A new data reduction method for these configurations is derived to remove the doubler effect from the 𝐺𝐼𝑐 calculation, producing ‘pure’ intrabead and interbead 𝐺𝐼𝑐 values. We show that CF/ABS is more damage tolerant than ABS at the intrabead level, but less damage tolerant than ABS at the interbead level. The development of plastic ligaments in ABS helps dissipate additional strain energy, improving the overall energy release rate. The experimental fracture test approach developed here is expected to provide mechanistic insight into their damage tolerance capability, accelerating the qualification process of LAAM-produced polymer and polymer composites. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. The presence of voids within the microstructure of short carbon fiber polymer composites produced by additive manufacturing (AM) technology are known to alter the expected material behavior that impair part performance. Previous research efforts aimed at understanding the formation mechanisms of these micro-voids during the polymer extrusion/deposition process have not kept up with the advancement of this AM technology. The present study investigates the phenomenon of micro-void nucleation at the fiber/matrix interface, especially those that form at fiber tips, by characterizing the microstructural configuration of a 13 % carbon fiber filled ABS polymer composite print bead specimen using 3D X-ray micro computed tomography image acquisition and analysis. The results reveal a high level of micro-voids segregation at the ends of fibers that are relatively larger in size and less spherical as compared to micro-voids isolated within the ABS matrix. Additionally, by simulating the hydrostatic flow-field pressure distribution surrounding a single rigid ellipsoidal fibre in colloidal suspension using Jeffery’s model equations, we show that the pressure drops to a critical value at the fibre tips where the micro-voids nucleation is experimentally observed to occur. The study helps to improve our understanding of the potential mechanisms that may be responsible for micro-void development within beads printed with extrusion/ deposition AM. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Micro-voids within the bead microstructure of additively manufactured short carbon fiber- reinforced polymer composites are known to compromise the material performance. Unfortunately, a comprehensive understanding of the formation mechanisms of micro-voids during polymer processing is currently lacking. The present study considers micro-void nucleation at fiber inter-faces, particularly those occurring at the end of suspended fibers. Micro-computed tomography (μCT) image acquisition techniques are used to characterize microstructural features of a 13wt% carbon fiber reinforced ABS compo-site bead manufactured via Large Area Additive Manufacturing (LAAM). The results reveal a significant collection of micro-voids at the tips of fibers approaching 80% of the total micro-void volume fraction. In addition, fiber tip micro-voids are relatively larger and less spherical than micro-voids isolated within the ABS matrix. Theoretical formulations of several known mechanisms for micro-void nucleation during LAAM material processing indicate that local-ized fluid pressure likely plays a pivotal role in micro-void formation. To better expose this mechanism, we simulate the hydrostatic flow-field pressure distri-bution surrounding a single rigid fiber suspended in simple shear flow using fi-nite element analysis (FEA). Computed results demonstrate that the polymer matrix pressure decreases significantly at the fiber ends where micro-void nucleation is experimentally observed to occur. Our approach provides the fiber surface pressure distribution in simple shear flow that typifies nozzle regions with extreme flow conditions, enhancing our understanding of micro-void development mechanisms as the polymer melt flows through the nozzle. 
    more » « less
  4. This paper proposes an efficient experimental method to measure the mode I fracture toughness of large-area additive manufactured polymeric composites. By utilizing either single-bead or double-bead systems bonded to the double cantilever beam (DCB) configuration, we measure intrabead and interbead fracture toughness of acrylonitrile butadiene styrene (ABS) and short carbon fiber-reinforced ABS. The effect of rigid doublers (which are used to eliminate a premature compressive failure) is excluded in the calculation of total energy dissipation, producing a purely interlayer fracture toughness. We found that the critical fracture toughness of carbon fiber/ABS is lower than that of ABS due to the voids within and between the beads. The experimental and data reduction methods developed here can be utilized to optimize the interlayer adhesion of large-scale 3D printed materials. 
    more » « less
  5. Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers and micro-voids, which are determined during processing. In this work, the correlation between fibers and micro-voids within the microstructure of LAAM polymer composites throughout various processing stages of short carbon fiber-reinforced acrylonitrile butadiene styrene (SCF/ABS) is investigated. The processing stages considered here include the incoming pellets, a single freely extruded strand, a single regularly deposited bead, and a single regularly deposited bead pressed by a mechanical roller. A high-resolution X-ray micro-computed tomography (µCT) system is employed to characterize the microstructural features in terms of the fibers (volume fraction, fiber orientation tensor) and micro-voids (volume fraction, sphericity) in the SCF/ABS samples. The results indicate that micro-voids exist within the microstructure of the SCF/ABS composite in all four stages considered here and that the micro-void volume fraction and micro-void sphericity vary among the test samples. Moreover, the results show a considerable variation in fiber orientation and fiber volume fraction within the microstructure throughout all the stages considered; however, all the samples show the highest alignment in the extrusion/print direction. Furthermore, a correlation is identified between the fiber orientation and the micro-void volume fraction within samples from all four stages considered here. This finding suggests that fibers tend to align more in the extrusion/print direction in regions with less micro-void content. 
    more » « less
  6. Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e., stiff materials connected to soft materials), which are appealing for many fields, such as bio-medical and soft robotics. In the present paper, process parameters and 3D printing strategies are presented to improve the interfacial adhesion between carbon fiber-reinforced nylon (CFPA) and thermoplastic polyurethane (TPU), which are extruded in the same manufacturing cycle using a multi-material MEX setup. To achieve our goal, a double cantilever beam (DCB) test was used to evaluate the mode I fracture toughness. The results show that the application of a heating gun (assembled near the nozzle) provides a statistically significant increase in mean fracture toughness energy from 12.3 kJ/m2 to 33.4 kJ/m2. The underlying mechanism driving this finding was further investigated by quantifying porosity at the multi-material interface using an X-ray computed tomography (CT) system, in addition to quantifying thermal history. The results show that using both bead ironing and the hot air gun during the printing process leads to a reduction of 24% in the average void volume fraction. The findings from the DCB test and X-ray CT analysis agree well with the polymer healing theory, in which an increased thermal history led to an increased fracture toughness at the multi-material interface. Moreover, this study considers the thermal history of each printed layer to correlate the measured debonding energy with results obtained using the reptation theory. 
    more » « less
  7. Fusion-based Material Extrusion (MEX) Additive Manufacturing (AM) processes have been extensively used for the fabrication of smart structures with embedded sensors, proving to have several benefits such as reduction in cost, manufacturing time, and assembly. A major issue negatively affecting 3D printed sensors is related to their poor electrical conductivity, as well as inconsistent electrical performance, which leads to electrical power losses amongst other issues. In the present paper, a set of process parameters (ironing, printing temperature, and infill overlap) has been analyzed by performing a Design of Experiment (DoE) factorial plan to minimize the electrical resistance. The best process parameters configuration involves a remarkable reduction of electrical resistance of 47.9%, as well as an improvement of mechanical properties of 31.9% (ultimate tensile strength), 25.8% (elongation at break) and 28.14% (flexural stress). The microstructure of the obtained results has also been analyzed by employing a high-resolution, X-ray Computed Tomography (X-Ray CT) system showing a reduction of intralayer voids of 19.5%. This work demonstrates a clear correlation between process parameters and the corresponding electrical properties, mechanical properties, and internal microstructure. In the present research, it has been shown that i) it is possible to significantly improve the overall 3D printed sensors performance by process parameter selection, and ii) small changes in the microstructure lead to remarkable improvements in electrical and mechanical performance. 
    more » « less
  8. Short carbon fiber-reinforced composite materials produced by large-area additive manufacturing (LAAM) are attractive due to their lightweight, favorable mechanical properties, multifunctional applications, and low manufacturing costs. However, the physical and mechanical properties of short carbon-fiber-reinforced composites 3D printed via LAAM systems remain below expectations due in part to the void formation within the bead microstructure. This study aimed to assess void characteristics including volume fraction and sphericity within the microstructure of 13 wt% short carbon fiber acrylonitrile butadiene styrene (SCF/ABS). Our study evaluated SCF/ABS as a pellet, a single freely extruded strand, a regularly deposited single bead, and a single bead manufactured with a roller during the printing process using a high-resolution 3D micro-computed tomography (µCT) system. Micro voids were shown to exist within the microstructure of the SCF/ABS pellet and tended to become more prevalent in a single freely extruded strand which showed the highest void volume fraction among all the samples studied. Results also showed that deposition on the print bed reduced the void volume fraction and applying a roller during the printing process caused a further reduction in the void volume fraction. This study also reports the void’s shape within the microstructure in terms of sphericity which indicated that SCF/ABS single freely extruded strands had the highest mean void sphericity (voids tend to be more spherical). Moreover, this study evaluated the effect of printing process parameters, including nozzle temperature, extrusion speed and nozzle height above the printing table on the void volume fraction and sphericity within the microstructure of regularly deposited single beads. 
    more » « less